

COURSE DESCRIPTION CARD

Course name

Software development process organization

Course

Field of study

Computer Science

Area of study (specialization)

Intelligent Information Technologies

Level of study

Second-cycle studies

Form of study

full-time

 Number of hours

Lecture

15

Tutorials

Number of credit points

2

Lecturers

Responsible for the course/lecturer

dr inż. Marcin Szeląg

e-mail: marcin.szelag@cs.put.poznan.pl

tel. 61 665 3023

Instytut Informatyki

ul. Piotrowo 2, 60-965 Poznań

 Prerequisites

Learning outcomes of the 1st level studies

University of Technology from April 24, 2017.

for the 2nd level studies - these effects are presented

Course objective

1. Dissemination of knowledge concerning

methods, automation of software build, cont

2. Development of skills of using proper techniques and to

COURSE DESCRIPTION CARD - SYLLABUS

Software development process organization

Intelligent Information Technologies

Year/Semest

1/1

Profile of s

general academic

Course offered in

polish

Requirements

compulsory

Laboratory classes

15

Projects/seminars

Other

lecturer:

mail: marcin.szelag@cs.put.poznan.pl

Responsible for the course/lecturer:

1st level studies as defined in the resolution 42 of the

from April 24, 2017. Especially effects K1st_W1-8, verified

these effects are presented on the webpage www.cat.put.poznan.pl

concerning: version control systems, agile software cos

, automation of software build, continuous integration, and software deployment.

proper techniques and tools during software development p

1

emester

Profile of study

general academic

Course offered in

Requirements

compulsory

Other (e.g. online)

course/lecturer:

42 of the senate of the Poznań

, verified during enrolment

cat.put.poznan.pl.

, agile software cost assesment

inuous integration, and software deployment.

during software development process

3. Formation of competence concerning

and libraries, respecting their licens

Course-related learning outcomes

Knowledge

1. student has advaced and deepened

build, and version control computer syste

2. student has advanced detailed knowledge c

Git versioning system - [K2st_W3]

3. student has advanced detailed knowledge concerning

delivery/deployment of software - [K2st_W3]

4. student has advanced detailed knowledge concerning

[K2st_W3]

5. student has advanced and detailed knowledge concerning

version cotrol system - [K2st_W5]

6. student has advanced and detailed knowledge concerning

software containers of the Docker platform

Skills

1. student can effectively use Git version cont

2. student can build application using communicating microservices, realized using Docker software

containers - [K2st_U5]

3. student can assess usefulness and

of software - [K2st_U6]

4. student can properly use Delphi effort est

[K2st_U7]

5. student can assess usefulness of tools used

[K2st_U9]

6. student can automate the process

Gradle system - [K2st_U11]

Social competences

1. student understands that knowledge and skills

- [K2st_K1]

2. student understands the necessity of tracking trends concerning

continuous integration, and continuous delivery/deployment

concerning conscious inclusion in developed software o

icensing constraints.

deepened knowledge concerning chosen tools for continuous integration,

omputer systems - [K2st_W1]

2. student has advanced detailed knowledge concerning software development w

student has advanced detailed knowledge concerning continuous integration and continuous

[K2st_W3]

student has advanced detailed knowledge concerning automation of software build using Gradle

detailed knowledge concerning preparation of software release

led knowledge concerning software deployment using ligh

the Docker platform - [K2st_W5]

se Git version control system to manage software configuration

2. student can build application using communicating microservices, realized using Docker software

3. student can assess usefulness and fitness of new tools to continuous integration and

effort estimation method in the software development pro

assess usefulness of tools used to build, continuously integrate, and deploy softwa

process of software build and preparation of its distributable

owledge and skills concerning software build and depl

ecessity of tracking trends concerning software versioning, build,

egration, and continuous delivery/deployment - [K2st_K2]

2

inclusion in developed software of external modules

concerning chosen tools for continuous integration,

ware development workflows employing

continuous integration and continuous

f software build using Gradle

software release using Git

software deployment using lightweight

configuration - [K2st_U2]

2. student can build application using communicating microservices, realized using Docker software

to continuous integration and automated build

imation method in the software development process -

rate, and deploy software -

distributable version using

oftware build and deployment age quickly

versioning, build,

3. student is aware of the rules concerning

developed software - [K2st_K4]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above

Fomative assessment:

a) concerning lectures:

- based on answers to questions concerning previous lectures

b) concening laboratories:

- based on current progress in re

Summary assessment:

a) concerning lectures:

- verification of knowledge and skills

questions (multiple choice), governing entire mat

least 6 out of 12 points,

- discussion of test results,

b) concening laboratories:

- continuous evaluation during

tasks or note concerning insufficient

- evaluation of an extra task verifying

at home

- verification of knowledge and skills using written test during the last

closed questions (multiple choice), governing entire material; to pass (3.0 evaluation) a student has to

obtain at least 18 out of 35 points.

Optionally, it is possible to gain add

- efficient application of acquired

- remarks concerning improvement of learning material.

Programme content

Lectures cover the following subjects:

e rules concerning licenses of external modules and librarie

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

to questions concerning previous lectures,

based on current progress in realization of tasks.

verification of knowledge and skills by written test during the last lecture, composed of closed

hoice), governing entire material; to pass (3.0 evaluation) a student has to obtain at

during classes - verifcation of sufficient realization

sufficient realization due to lack of commitment

verifying acquired practical skills, realized partiall

e and skills using written test during the last labo

closed questions (multiple choice), governing entire material; to pass (3.0 evaluation) a student has to

gain additional points for activity during classes, and especially for:

acquired knowledge to solve given task,

remarks concerning improvement of learning material.

jects:

3

icenses of external modules and libraries employed in

written test during the last lecture, composed of closed

evaluation) a student has to obtain at

ization degree of assigned

, realized partially in lab and partially

laboratory, composed of

closed questions (multiple choice), governing entire material; to pass (3.0 evaluation) a student has to

itional points for activity during classes, and especially for:

Agile effort estmation methods in software development

Management of software versions -

Automation of software build - Gradle system.

Software continuous integration and

Building applications using communicatin

Application deployment using software con

Laboratories cover the following subjects:

Distributed versioning system Git - basic

Gradle system - analysis and extensio

of own tasks and plugins.

Continuous software integration - configuration o

Development of applications using Docker software containers

docker-compose tool, docker stack, application scaling, orchestration

Teaching methods

1. lectures: multimedia presentation

2. laboratories: verbal introduction, electronic note

Bibliography

Basic

1. Pro Git, 2nd edition, Scott Chacon, Ben Straub, 2014 (https://git

2. Agile Estimating and Planning, Mike Cohn,

3. Gradle User Manual (https://docs.gradle.org/curren

4. Jenkins User Documentation (https://jenkins.io/doc/).

5. Docker: Up & Running, 2nd Edition,

Additional

1. Continuous Integration, M. Fowler, 2006,

http://www.martinfowler.com/articles/continuousIntegration.html.

2. Building and Testing with Gradle, T. Berglund, M. McCullough, O'Reilly Media, 2011.

software development process.

- Git system, chosen Git workflows.

Gradle system.

and continuous delivery/deployment.

communicating microservices .

using software containers - Docker system.

cover the following subjects:

basic commands, advanced topics, Gitflow w

and extension of exemplary building scripts, dependency management, writing

configuration of Jenkins server.

ng Docker software containers - building images,

compose tool, docker stack, application scaling, orchestration.

ia presentation, demonstration, discussion,

tion, electronic notes, tutorials, open practical tasks

2nd edition, Scott Chacon, Ben Straub, 2014 (https://git-scm.com/book/en/v2).

, Mike Cohn, Pearson, 2005.

3. Gradle User Manual (https://docs.gradle.org/current/userguide/userguide.html).

4. Jenkins User Documentation (https://jenkins.io/doc/).

2nd Edition, Sean P. Kane, Karl Matthias, O'Reilly Media

1. Continuous Integration, M. Fowler, 2006,

http://www.martinfowler.com/articles/continuousIntegration.html.

2. Building and Testing with Gradle, T. Berglund, M. McCullough, O'Reilly Media, 2011.

4

commands, advanced topics, Gitflow workflow.

dependency management, writing

uilding images, running containers,

al tasks.

scm.com/book/en/v2).

t/userguide/userguide.html).

O'Reilly Media, 2018.

2. Building and Testing with Gradle, T. Berglund, M. McCullough, O'Reilly Media, 2011.

3. Docker Documentation (https://docs.docker.com/).

Breakdown of average student's workload

Total workload

Classes requiring direct contact with the teacher

Student's own work (preparation for laboratory classes

(mini-project), preparation for tests, literature study

1
 delete or add other activities as appropriate

3. Docker Documentation (https://docs.docker.com/).

of average student's workload

Hours

50

Classes requiring direct contact with the teacher 32

preparation for laboratory classes, homework

literature study)
 1

18

delete or add other activities as appropriate

5

ECTS

2,0

1,3

0,7

